ON THE NUMBER OF SOLUTIONS OF EQUATION $X^{n}=1$

ADEBISI, S.A.

Abstract

The number of solutions of the monomial given by $x^{n}=1$ forms a group \mathbb{A} say. Thus, let $x=f(n, k)$ be a solution. There exist stochastic differential equations involving $\frac{\partial x}{\partial k}$ and $\frac{\partial x}{\partial n}$ of which the solution has a place and is applicable to the Mckendrick-von Foerster equation, where $n \in \mathbb{Z} \backslash 0$ and $k \in \mathbb{R}$. Moreover, for any equation of second degree, the number of solutions in the function forms a group of order 2.

1. Introduction

In the study of finite p-groups, the main challenges lie in the fact that the number of such groups is very large. Research has shown (for example) that there are exactly 267 non-isomorphic groups of order 2^{6} [9], 2,328 groups of order 2^{7} e.t.c. [7].

It therefore becomes an object of curiosity, finding nontrivial properties of almost all p-groups.

Most generally, p-groups have the properties of Nilpotence, Monomiality, Burnside's basis theorem, Counting theorems of Sylow, Miller and Kulakoff.

So, it is natural to seek common properties for sufficiently large sets of p-groups.
Finte p-Groups are ideal instruments for combinatorial and cohomological investigations. Some basic properties were proved by Frobenius, Sylow and Burnside. Eventhough, Philip Hall (1904-1982) laid the foundations of modern p-group theory in his three fundamental papers normally, Blackburn also made a very outstanding achievement in the concept after Hall.

The original theorem on the number of solutions of equation $X^{n}=1$ in a finite group was identified with Frobenius. Meanwhile, I . M. Isaac \& G.R. Robinson (see [2]) supplied a new proof in this direction (see also [2]). Suppose that $f_{n}(G)$ is the number of solutions of the equation $x^{n}=1$ in G . Also, let $n(p)$ denote the largest p-power which divides n

This celebrated theorem of Frobenius [1] in a finite group with the Sylow's theorem is the first and most fundamental counting theorem in finite group theory (see [3], [7]).

Theorem (Frobenius).(see [7]) Suppose that G is a finite p-group . If $n \in \mathbb{N}$ and the ooder of $\mathrm{G},|G|$ is divisible by n, then the number $f_{n}(G)$ is a multiple of n. (see [1], [7])
Lemma A : Let $a \in G$ be of order $g=m n$, where $\operatorname{gcd}(m, n)=1$. Then, $a=a(m) a(n)$, where $|a(m)|=m, \mid a(n)=n$, and $a(m), a(n)$ are powers of a

[^0]Suppose that $a=b c=c b ; o(b)=m, o(c)=n$, then , $b=a(m), c=a(n)$.
Proof : From the fact that $\operatorname{gcd}(m, n)=1$ (i.e m and n are relatively prime)
$\exists \mathrm{x}, \mathrm{y} \in \mathbb{Z} \ni m x+n y=1$. Set $a(m)=a^{n y}, a(n)=a^{m x}$; then
$a(m) a(n)=a(n) a(m)=a$. We have that $(x, y)=1=(x, n)=(y, m)$. If $|a(m)|=m_{1}$, then $(a(m))^{m_{1}}=a^{n m_{1} y}=1$, so , $m_{1} n y$ is divisible by $m n$. Hence m divides m_{1} since $(m, n y)=1$. As $(a(m))^{m}=a^{m n y}=1,|a(m)|=m_{1}$ divides m. Thus, $m_{1}=m$, and so, $|a(m)|=m$. Similarly , $\mid a(n)=m$. Now, if we assume that $a=b c=c b$ for $\mathrm{b}, \mathrm{c}, \in G$ and $o(b)=m, o(c)=n$. Claiming that $b=a(m)$ and $c=a(n)$, we have that:
$(a(n))^{m}=(a(m) a(n))^{m}=a^{m}=(b c)^{m}=b^{m} c^{m}=c^{m}$.Suppose that $x \in \mathbb{Z} \ni$ $m x=1(\operatorname{modn})$, then $a(n)=(a(n))^{m x}=\left((a(n))^{m}\right)^{x}=\left(c^{m}\right)^{x}=c^{m x}=c^{m x+n y}=c$ $\because o(c)=n$. Thus, $a(m) a(n)=a=b c=b a(n)$. And so , $b=a(m)$
Definition : Transversal : Let Q be a subgroup of a group G. A subset B of G is known as a right transversal for Q in G if B consists of exactly one element from each right coset of Q in G. The left transversal of Q in G can be defined analogously .If G is abelian, then we simply call B a transversal for Q in G. For instance, $B=\{0,1,2,3,4\}$ is a transversal for $5 \mathbb{Z}$ in $(\mathbb{Z},+)$
Lemma B: (see [7]) Let G be a group. Given that $r=n(p)$, where $n \in \mathbb{N}$ and p is a prime. Let B be a transversal for the conjugacy classes of elements $y \in G$ for which $y^{n / r}=1$. Then, we have that

$$
f_{n}(G)=\sum_{b \in B}\left|G: C_{G}(b)\right| \cdot f_{r}\left(C_{G}(r)\right) \cdots(*)
$$

Proof : By Lemma (A) if $g \in G$ with $g^{n}=1$ then, $g=x y$, where $x y=y x$ $o(x)=o(g)(p)$ divides $r, o(y)=\frac{o(g)}{o(g)(p)}$ divides $\frac{n}{r}$. This is a unique expression. \Rightarrow

$$
f_{n}(G)=\sum_{y \in G, y^{n / r}=1} f_{r}\left(C_{G}(y)\right) .
$$

Definitely, if g is as given, its contribution in $f_{r}\left(C_{G}(y)\right)$ is equal to 1 if y is the p^{\prime}-part of g and it is zero if y is not a p^{\prime}-part of g. This contribution of g in $f_{n}(G)$ is also 1 . Now, since $f_{r}\left(C_{G}(y)\right)$ remains constant as y runs over the index $\left|G: C_{G}(b)\right|$ elements in the conjugacy classes represented by $b \in G$. Hence, this agrees with (*)
Definition : A group G has p-Frobenius property if p^{φ} divides $f_{p^{\varphi}}(G)$ whenever p^{φ} divides $|G|$.
Lemma C: Let r be a power of $p \ni t$ divides $|G|$. Suppose that $Q \leq G$ is a subgroup which has the p-Frobenius property. Then r divides $|G: Q| \cdot f_{r}(Q)$.
Proof : Assume that $r_{0}=|Q|(p) \leq r$ Then, $f_{r}(Q)=f_{r_{0}}(Q)$ is divisible by r_{0}, by the hypothesis, and $|G: Q|$ is divisible by $\frac{|G|(p)}{r_{0}} \Rightarrow|G|(p)$ divides $|G: Q| f_{r}(Q)$. Now, since r divides $|G|(p)$, the proof is complete .
Lemma D : (Cauchy see [7]) Let G be an abelian group. If a prime p divides $|G|$ then $\exists g \in G \ni o(g)=p$.
Proof : Assume that the lemma is true \forall proper subgroups of G. One may thus suppose that G has two different maximal subgroups U and $V \ni B=U V$ and $|G|=\frac{|U \| V|}{|U \cap V|}$, by the direct formula. Thus p divides either $|U|$ or $|V|$.
Lemma : G has the p-Frobenius property .

Proof : By induction on $|G|$, let r be a p-power $\ni r$ divides $|G|$. Suppose that $r=|G|(p)$ and we apply lemma (B), and let $n=|G|$, then we obtain as follows

$$
|G|=n=f_{n}(G)=|B \cap Z(G)| \cdot f_{r}\left(C_{G}(b)\right)+\sum_{b \in B \backslash Z(G)}\left|G: C_{G}(b)\right| \cdot f_{r}\left(C_{G}(B)\right) .
$$

Proceeding by induction, applying lemma (C), we have that r divides $|G: Q|$ $f_{r}(Q)$ for $b \in B \backslash Z(G)$, where $Q=C_{G}(b)$. And, since r divides $|G|$, we have that r divides $|B \cap \mathbb{Z}(G)| . f_{r}(G)$, by the formula. And so, it suffices to show that $p \nmid B \cap Z(G) \mid$. We now have that $B \cap Z(G)=\left\{y \in Z(G) \mid y^{n / r}=1\right\}$, that is $|B \cap Z(G)|=f_{n / r}(Z(G))$. Thus , $p \nmid B \cap Z(G) \mid$, by lemma (D), since $p \nmid(n / q)$ Now, let $r<|G|(p)$. As r divides $|G|(p)$ and $f_{|G|(p)}(G)-f_{r}(G)$. Let \mathcal{G} be the set of elements of G having p-power order which exceeds r. Then,
$f_{|G|(p)}(G)-f_{r}(G)=|\mathcal{G}|$. If t is one of such elements and $o(t)=p^{k}(>r), s \in \mathbb{N}$ then the number of elements of order $>r$ in $\langle t\rangle$ is $p^{k}-r$ and r divides $p^{k}-r$ since by assumption, the p-power $r<p^{k}$. Then, the set \mathcal{G} is partitioned in subsets of cardinalities which are divisible by r.
Proposition : (Normalizer/Centralizer-Theorem see [7]) Suppose that $Q \leq G$ then $N_{G}(Q) / C_{G}(Q)$ is isomorphic to a subgroup of $\operatorname{Aut}(Q)$.
Proof : First, assume that for any $g \in G$, a mapping $\varphi_{g}: q \mapsto g q g^{-1}(q \in Q)$ is an automorphism of Q. Thus, $g \mapsto \varphi_{g}$ is a homomorphism of G into $\operatorname{Aut}(Q)$ with the kernel $C_{G}(Q)$.
Proposition I: Suppose that

$$
\begin{equation*}
x^{n}=1 \tag{i}
\end{equation*}
$$

Then
(i) The number of solutions of (i) forms a group \mathbb{A}
(ii) Define a stochastic process by:

$$
\begin{aligned}
& x(n, k)=\left\{\cos \frac{2 \pi k}{n}+i \sin \frac{2 \pi k}{n}\right\} \begin{array}{l}
n \in \mathbb{R} \backslash 0 \\
k \in \mathbb{Z}
\end{array} \\
& \frac{\partial x}{\partial k}=x_{k}^{\prime}=a_{1} \mathbb{A} \text { is a group and } \\
& \frac{\partial x}{\partial n}=x_{n}^{\prime}=a_{2} \mathbb{A} \text { is a group; where } a_{1}, a_{2} \in \mathbb{C}
\end{aligned}
$$

Whence

$$
\frac{\partial x}{\partial k}+\frac{\partial x}{\partial n}=x_{k}^{\prime}+x_{n}^{\prime}=f(k, n, x)
$$

which is a type of the differential equation[8]

$$
\begin{equation*}
U_{t}+U_{a}=-C(t, a, u) \tag{1}
\end{equation*}
$$

of age - a individuals satisfies the Mckendrick-von Foerster equation given by (1) above.

Existence of Solution

Recall that in (1) if $C(t, a, u)$ is of the form $\frac{c v}{L-a}, t>0,0<a<L$ and $u(t, 0)=b(t), t>0$ where C and L are positive constants, then

$$
U_{t}+U_{a}=\frac{-c u}{L-a}
$$

has a solution given by:

$$
U=b(t-a)\left(\frac{L-a}{L}\right)^{c} .
$$

Proposition II: For an equation of degree 2, the number of solutions in the function, forms a group of order 2.

Proof: Every equation in degree 2 is always of the form : $(f(x))^{2}=1 \Rightarrow f(x)=\{-1,1\}$ from where x is calculated.

Bibliography

[1]: Berkovich, Y. and Zhmud, E.M. (1998, 1999). Characters of Finite Groups, Parts 1, 2. Translations of Mathematical Monographs 172, 181, AMS Providence RI.
[2]: Isaacs, I.M. \& Robinson, G.R. (1992). On a theorem of Frobenius: Solutions of $x^{n}=1$ in finite groups. Amer. Math. Monthly 99 (352-354).
[3]: Frobenius, G. and Stickelberger, L. (1879). Über Gruppen von Vertauschbaren Elementen, J. reine angew. Math. 86 (217-262).
[4]: Wielandt, H. (1959). Ein Beweis für die Existenz der Sylow gruppen. Arch. Math. 10 (401-402) (MR26 \#504).
[5]: Parker, C. and Rowley, P. (2002). Symplectic Amalgams Springer. Berlin.
[6]: Dolfi, S. (1995). Arithmetical conditions on the length of the conjugacy classes of a finite group. J. Algebra 174 (753-771).
[7]: Yakov Berkovic (2008). Groups of prime power order vol. 1. Walter de Gruyter GmbH \& Co. KG, 10785 Berlin, Germany.
[8]: Körezlioglu \& A.S. Üstünel (1992) Stochastic Analysis and Related Topics. Birkhäuser Boston Berlin.
[9]: Simon A., Levin et.al. Applied Mathematical Ecology. Springer-Verlag.

[^0]: Key words and phrases. Frobenius property, transversal, homomorphism, Mckendrick-von Foerster equation.

