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Abstract. The number of solutions of the monomial given by xn = 1 forms

a group A say. Thus, let x = f(n, k) be a solution. There exist stochastic

differential equations involving
∂x

∂k
and

∂x

∂n
of which the solution has a place

and is applicable to the Mckendrick-von Foerster equation, where n ∈ Z\0 and
k ∈ R. Moreover, for any equation of second degree, the number of solutions

in the function forms a group of order 2.

1. Introduction

In the study of finite p-groups, the main challenges lie in the fact that the
number of such groups is very large. Research has shown (for example) that there
are exactly 267 non-isomorphic groups of order 26 [9], 2, 328 groups of order 27

e.t.c. [7].
It therefore becomes an object of curiosity, finding nontrivial properties of almost

all p-groups.
Most generally, p-groups have the properties of Nilpotence, Monomiality, Burn-

side’s basis theorem, Counting theorems of Sylow, Miller and Kulakoff.
So, it is natural to seek common properties for sufficiently large sets of p-groups.
Finte p-Groups are ideal instruments for combinatorial and cohomological inves-

tigations. Some basic properties were proved by Frobenius, Sylow and Burnside.
Eventhough, Philip Hall (1904-1982) laid the foundations of modern p-group theory
in his three fundamental papers normally, Blackburn also made a very outstanding
achievement in the concept after Hall.

The original theorem on the number of solutions of equation Xn = 1 in a finite
group was identified with Frobenius . Meanwhile , I . M. Isaac & G.R. Robinson
(see [2]) supplied a new proof in this direction (see also [2]) . Suppose that fn(G)
is the number of solutions of the equation xn = 1 in G . Also , let n(p) denote the
largest p-power which divides n

This celebrated theorem of Frobenius [1] in a finite group with the Sylow’s theo-
rem is the first and most fundamental counting theorem in finite group theory (see
[3], [7]).

Theorem (Frobenius).(see [7]) Suppose that G is a finite p-group . If n ∈ N
and the ooder of G ,| G | is divisible by n , then the number fn(G) is a multiple of
n . (see [1], [7])
Lemma A : Let a ∈ G be of order g = mn , where gcd(m,n) = 1 . Then ,
a = a(m)a(n) ,where | a(m) |= m , | a(n) = n , and a(m) , a(n) are powers of a
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Suppose that a = bc = cb ; o(b) = m , o(c) = n , then , b = a(m) ,c = a(n) .
Proof : From the fact that gcd(m,n) = 1 (i.e m and n are relatively prime )
∃ x,y ∈ Z 3 mx+ ny = 1 . Set a(m) = any , a(n) = amx ; then
a(m)a(n) = a(n)a(m) = a . We have that (x, y) = 1 = (x, n) = (y,m) . If
| a(m) |= m1 , then (a(m))m1 = anm1y = 1 , so , m1ny is divisible by mn . Hence
m divides m1 since (m,ny) = 1 . As (a(m))m = amny = 1 , | a(m) |= m1 divides
m . Thus , m1 = m , and so , | a(m) |= m . Similarly , | a(n) = m . Now , if
we assume that a = bc = cb for b,c, ∈ G and o(b) = m , o(c) = n . Claiming that
b = a(m) and c = a(n) , we have that:
(a(n))m = (a(m)a(n))m = am = (bc)m = bmcm = cm .Suppose that x ∈ Z 3
mx = 1(modn) , then a(n) = (a(n))mx = ((a(n))m)x = (cm)x = cmx = cmx+ny = c
∵ o(c) = n . Thus , a(m)a(n) = a = bc = ba(n) . And so , b = a(m)
Definition : Transversal : Let Q be a subgroup of a group G . A subset B of
G is known as a right transversal for Q in G if B consists of exactly one element
from each right coset of Q in G . The left transversal of Q in G can be defined
analogously .If G is abelian , then we simply call B a transversal for Q in G . For
instance , B = {0, 1, 2, 3, 4} is a transversal for 5Z in (Z,+)
Lemma B: (see [7]) Let G be a group . Given that r = n(p) , where n ∈ N and p
is a prime . Let B be a transversal for the conjugacy classes of elements y ∈ G for
which yn/r = 1 . Then , we have that

fn(G) =
∑
b∈B

| G : CG(b) | .fr(CG(r)) · · · (∗)

Proof : By Lemma (A) if g ∈ G with gn = 1 then , g = xy , where xy = yx

o(x) = o(g)(p) divides r , o(y) = o(g)
o(g)(p) divides n

r . This is a unique expression .
⇒

fn(G) =
∑

y∈G,yn/r=1

fr(CG(y)).

Definitely , if g is as given , its contribution in fr(CG(y)) is equal to 1 if y is the
p′-part of g and it is zero if y is not a p′-part of g . This contribution of g in
fn(G) is also 1 . Now , since fr(CG(y)) remains constant as y runs over the index
| G : CG(b) | elements in the conjugacy classes represented by b ∈ G . Hence , this
agrees with (∗)
Definition : A group G has p-Frobenius property if pϕ divides fpϕ(G) whenever
pϕ divides | G | .
Lemma C: Let r be a power of p 3 t divides | G | . Suppose that Q ≤ G is a
subgroup which has the p-Frobenius property . Then r divides | G : Q | .fr(Q) .
Proof : Assume that r0 =| Q | (p) ≤ r Then , fr(Q) = fr0(Q) is divisible by

r0 , by the hypothesis , and | G : Q | is divisible by |G|(p)
r0
⇒ | G | (p) divides

| G : Q | fr(Q) . Now , since r divides | G | (p) , the proof is complete . �
Lemma D : (Cauchy see [7]) Let G be an abelian group . If a prime p divides | G |
then ∃ g ∈ G 3 o(g) = p.
Proof : Assume that the lemma is true ∀ proper subgroups of G . One may thus
suppose that G has two different maximal subgroups U and V 3 B = UV and

| G | = |U ||V |
|U∩V | , by the direct formula .Thus p divides either | U | or | V | . �

Lemma : G has the p-Frobenius property .
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Proof : By induction on | G | , let r be a p-power 3 r divides | G | . Suppose that
r =| G | (p) and we apply lemma (B) , and let n =| G | , then we obtain as follows

| G |= n = fn(G) =| B ∩ Z(G) | .fr(CG(b)) +
∑

b∈B\Z(G)

| G : CG(b) | .fr(CG(B)).

Proceeding by induction , applying lemma (C) , we have that r divides | G : Q |
fr(Q) for b ∈ B\Z(G) ,where Q = CG(b) . And , since r divides | G | , we have
that r divides | B ∩ Z(G) | .fr(G) , by the formula . And so , it suffices to show
that p -| B ∩Z(G) | .We now have that B ∩Z(G) = {y ∈ Z(G) | yn/r = 1} , that is
| B ∩Z(G) | = fn/r(Z(G)) . Thus , p -| B ∩Z(G) | , by lemma (D) ,since p - (n/q)
Now , let r < | G | (p) . As r divides | G | (p) and f|G|(p)(G) - fr(G) . Let G be the
set of elements of G having p-power order which exceeds r . Then ,
f|G|(p)(G) - fr(G) = | G | . If t is one of such elements and o(t) = pk ( > r ) , s ∈ N
then the number of elements of order > r in 〈t〉 is pk - r and r divides pk - r since
by assumption , the p-power r < pk . Then , the set G is partitioned in subsets of
cardinalities which are divisible by r . �
Proposition : (Normalizer/Centralizer-Theorem see [7]) Suppose that Q ≤ G then
NG(Q)/CG(Q) is isomorphic to a subgroup of Aut(Q) .
Proof : First , assume that for any g ∈ G , a mapping ϕg : q 7→ gqg−1 (q ∈ Q) is
an automorphism of Q . Thus , g 7→ ϕg is a homomorphism of G into Aut(Q) with
the kernel CG(Q) .
Proposition I: Suppose that

xn = 1 (i)

Then

(i) The number of solutions of (i) forms a group A
(ii) Define a stochastic process by:

x(n, k) =

{
cos

2πk

n
+ i sin

2πk

n

}
n ∈ R\0
k ∈ Z

∂x

∂k
= x′k = a1A is a group and

∂x

∂n
= x′n = a2A is a group; where a1, a2 ∈ C

Whence
∂x

∂k
+
∂x

∂n
= x′k + x′n = f(k, n, x)

which is a type of the differential equation[8]

Ut + Ua = −C(t, a, u) (1)

of age - a individuals satisfies the Mckendrick-von Foerster equation given by (1)
above.
Existence of Solution

Recall that in (1) if C(t, a, u) is of the form cv
L−a , t > 0, 0 < a < L and

u(t, 0) = b(t), t > 0 where C and L are positive constants, then

Ut + Ua =
−cu
L− a
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has a solution given by:

U = b(t− a)

(
L− a
L

)c

.

Proposition II: For an equation of degree 2, the number of solutions in
the function , forms a group of order 2.

Proof: Every equation in degree 2 is always of the form :
(f(x))2 = 1⇒ f(x) = {−1, 1} from where x is calculated.
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